

DO Run 2b Project

- Run 2b Project overview
 - Motivation
 - Design guidelines
 - Overall approach
 - Sub-project overviews
 - Organization
- Silicon replacement
- Trigger upgrades
- Project status: responsibilities, cost, schedule
- Conclusions

Jon Kotcher
FNAL Department of Energy Review
March 19-21, 2002

Run 2b Motivation

- Direct probe of Higgs sector unique to Fermilab program until turn-on of LHC
- Laboratory: determine experiment's needs in order to optimize Higgs reach, exploit luminosity during next 5+ years
- 15 fb⁻¹ per experiment probes $M_H \sim 185 \text{ GeV/}c^2 (3\sigma)$
 - ▲ LEP limit (F. Cerutti, LaThuille '02)
 - M_H>114.1 GeV/c² (95% CL)
 - ▲ Latest global fit to electroweak data (A. Tonazzo, LaThuille '02)
 - $M_H = (85^{+54/-34}) \text{ GeV/c}^2$
 - $M_H < 196 \text{ GeV/c}^2 (95\% \text{ CL})$
- Prospects for Higgs search at Fermilab continue to be very positive
 - Opportunity unique, time scales finite
 - Requires fast, efficient definition and ramp-up of projects, application of resources - accelerated approach
 - * Experiment, laboratory collaborating very closely together to realize this

Run 2b Design Guidelines

 Run 2b: increase in instantaneous, integrated luminosity relative to guidelines that drove Run 2a detector design

	Integrated Luminosity (fb ⁻¹)	Instantaneous Luminosity (X10 ³² cm ⁻² sec ⁻¹)					
Run 2a	2	2					
Run 2b	15	4-5					
Requirements for Run 2b	Silicon replacement, more rad-hard version	Trigger upgrades (dominated by Level 1)					

Silicon:

- Current detector designed for $\sim 2 \text{ fb}^{-1}$, evidence that it will survive to 4-5 fb⁻¹
 - ▲ The most appropriate rad-hard technology used at that time
- * After study of various options, have chosen to pursue full silicon replacement
 - ▲ Partial replacement not viable: unacceptable level of technical risk, more down-time for removal/installation, limited SVX2 chip availability, etc.

Trigger:

- Increase in luminosity results in unacceptable increase in rates occupancies, pileup, combinatorial effects
- Move rejection upstream in readout stream (contain dead time), maintain both downstream rejection, event selectivity

Run 2b Philosophy

- Collaboration, Project Management has been designing Run 2b project with full awareness of tight constraints
 - Time scales abbreviated
 - * Technical, financial resources not unlimited
 - Collaboration is, and will be, multi-tasking
 - ▲ Run 2b upgrade + commissioning, operations, data analysis, physics
- Have sought to limit scope, complexity wherever possible
 - * Exploit existing designs, systems, experience
 - + Effort to find alternatives to designs that require broad replacements of infrastructure
 - Carefully crafting sub-projects, assignments, & responsibilities
 - Modify course based on Run 2a results if necessary
 - Target high-p_T program exclusively

Aforementioned silicon detector and trigger upgrades are the two major ingredients deemed necessary in order to adequately pursue the Run 2b physics program

Sub-Project Overviews

Silicon

- * Replace with more radiation-hard version
 - \blacktriangle Improve impact-parameter resolution (b-tagging), maintain good pattern recognition, broad $|\eta|$ coverage

Level 1 Trigger

- Shift some trigger functionality upstream to hardware level trigger, increase overall Level 1 trigger capability - contain rates, dead time
 - ▲ Calorimeter clustering & digital filtering
 - ▲ Enhance track trigger to respond to increased occupancies
 - ▲ Calorimeter cluster matched with track

Level 2 Trigger

- Silicon Track Trigger (STT) upgrade to address increased occupancies, map to extended silicon detector
- ullet Incremental eta-processor upgrade to maintain Level 2 rejection, event selectivity

• Online System

 Address aging, obsolescence of computing hardware, need for higher bandwidth data logging, filtering capability

DO Experiment Organization

Run 2b Project Organization

Some Silicon Design Considerations, Boundary Conditions

- Installation within existing fiber tracker, with inner radius of 180 mm
- Full tracking coverage
 - Fiber tracker up to $|\eta|$ < 1.6
 - Silicon stand-alone up to $|\eta|$ < 2.0
- Installation in collision hall
 - Tracker will be built in two independent half-modules, split at z=0
- nait-modules, split at z=0
 Simplicity, conservative approach:
 - Live within existing cable plant, reuse interface boards
 - Limit number of modules 2 (axial+stereo) X 3 types (L2-5)
 - On-board electronics wherever possible (analog cables)
 - >15 fb⁻¹ LO&1, >25 fb⁻¹ outer layers
 - + LO&1 mechanically distinct staging if needed, future replacement?
 - Use established technologies, do not over-design (no 90-degree stereo)
- Luminous region: length of inner layer 96 cm, on plateau of luminosity acceptance
- Radiation damage requires silicon operating temperature of −10°C,
 off-board electronics for innermost layer
- Respect 6-fold symmetry required by Silicon Track Trigger

Run 2b Shutdown Constraints

Split-silicon design allows installation in Collision Hall

Platform not rolled out - much reduces time, effort, risk Allows shutdown time to be dedicated to installation, hookup, commissioning

FNAL DoE Review Mar 19-21, 2002

Fiber Tracker Insertion into Bore

NAL DOE REVIEW Var 19-21, 2002

Fiber Tracker Installed in Bore

Inner bore for silicon

Fiber . Tracker

Solenoid

Run 2a Silicon Installation South Half-Barrel

SMT-S being transferred to transport truck

SMT-S inserted into CFT bore, between cryostats

Run 2b Shutdown

Silicon End Game

Activity	Duration wrt previous task
Shutdown begins	-
Silicon ready to move to DAB	12 weeks
Silicon installed in Fiber Tracker	3 weeks
Silicon cabling, commissioning begins	7 weeks
Commissioning complete, ready to close	10 weeks
TOTAL SHUTDOWN DURATION	~ 7 MONTHS

Durations obtained from resource-loaded silicon schedule, previous Run 2a experience

Schedule being fully reconsidered for upcoming series of reviews: consistent with 7 month shutdown beginning in CYO5

- · Timing, duration of shutdown driven by silicon
- Replacement of trigger elements require limited access to Collision Hall (Counting Rooms only)
- · Ample time for installation of upgraded Level 1 trigger (2-3 months), but projects must be properly synched

DoE Review

Basic Design Choices

- Six layer silicon tracker, divided into two radial regions
 - Inner layers: Layers 0 and 1
 - ▲ Axial readout only
 - ▲ Mounted on integrated support
 - Assembled into one unit
 - \blacktriangle Designed for V_{bias} up to 1000 V
 - 🔸 Outer layers: Layers 2-5 🥿
 - ▲ Axial and stereo readout
 - ▲ Stave support structure
 - \blacktriangle Designed for V_{bias} up to 300 V
- Employ single sided silicon only,
 3 sensor types
 - 2-chip wide for Layer 0
 - 3-chip wide for Layer 1
 - 5-chip wide for Layers 2-5
- No element supported from the beampipe
- Drilled Be beampipe with ID of 0.96", 500 µm wall thickness

Silicon Layer 0

• Support Structure

- 12-fold crenellated geometry
- Carbon-fiber-lined carbon foam
- Integrated cooling
- $+ R_{in} = 18.5 \text{ mm}$

Assembly

- 2-chip wide sensors
- + 25 μm pitch, 50 μm readout
- Analog cables for readout
- Hybrids off-board

Silicon Inner Layers

 Inner two layers have 12-fold crenellated geometry with carbon fiber lined, carbon foam support structure

Layer 0

2-chip wide sensors,
 25 μm pitch, 50 μm readout

Analogue cables for readout

Hybrids off-board

 $+ R_{in} = 17.8 \text{ mm}$

Layer 1

3-chip wide sensors,
 58 μm pitch, axial readout

Hybrids on-board

6-chip hybrid readout

 $+ R_{in} = 34.8 \text{ mm}$

Silicon Stave Structure

- Stave is doublet structure of four readout modules
 - Two layers of silicon
 - Axial and stereo
 - ▲ Two readout modules each
 - separated by PEEK cooling lines
 - Total of 168 staves
- Staves are mounted in end carbon fiber bulkheads
- Stave has carbon fiber cover
 - Protect wirebonds
 - Provide path for digital cables
- Cooling manifold similar to bulkhead design

Run 2b Tracking System: Plan View

Silicon Tracker Performance

Expected performance of Run 2b vs. Run 2a silicon trackers, Full GEANT simulations

	Run2b	Run2a
P(n _b >= 1)	80%	68%
P(n _b >= 2)	35%	21%

Double b-tag efficiency improves X 1.6 compared with Run 2a detector

DO Trigger Architecture

Level 1

- Calorimeter trigger
- Fiber tracker trigger
- Preshower (e/γ) trigger
- Muon trigger

Level 2

- Silicon track trigger
- Introduce correlations, refine Level 1 decision

Level 3

- Full event information available
- Farm of high-performance computing nodes

Run 2b Trigger Task Force

- Run 2b Trigger Task Force in place Mon, 6/25/01:
 - Co-Chairs: M. Hildreth (Notre Dame), R. Partridge (Brown U)
- Calorimeter
 - + M. Abolins (MSU)
 - D. Baden (UMaryland)
 - B. Kehoe (MSU)
 - + P. Le Du (Saclay)
 - E. Perez (Saclay)
 - M. Tuts* (Columbia)
 - V. Zutshi (BNL)
- Technical/Hardware
 - D. Edmunds (MSU)
 - M. Johnson* (Fermilab)
 - + J. Linnemann (MSU)
 - D. Schamberger (Stony Brook)

- Tracking
 - + B. Abbott (UOklahoma)
 - + D. Alton (UMichigan)
 - V. Bhatnagar (Orsay)
 - F. Borcherding (Fermilab)
 - S. Chopra (BNL)
 - F. Filthaut (UNijmegen)
 - + Y. Gerstein (Brown U)
 - G. Ginther* (URochester)
 - + P. Petroff (Orsay)
- Muon
 - J. Butler (Boston U)
 - + K. Johns* (UArizona)

The Run 2b Level 1 Trigger Challenge

Run 2 Working Group results assume:

- ~100% Leptonic Trig. eff.
- ~100% L1 eff. for $ZH\rightarrow vvbb$
 - \blacktriangle ME_T>35 GeV + topo jet cuts

The triggering challenge for Run 2b:

+ High P_T Trig's > Bandwidth at L = 5×10³² cm⁻²s⁻¹

Trigger	Physics	L1 rate (kHz)			
EM Trigger Tower > 10 GeV	W→ev	5			
Track Trigger 2Trks (5,10GeV) + Iso + EM>2GeV	Η→ττ	10			
Jet Trigger 2 H+EM towers Σ > 4GeV	ZH→vvbb	2			

DØ Studies:

- Trigger Task Force
 - ▲ Develop plan for Run 2b Trigger System
 - ▲ Tracking, Calorimeter, Muon, Tech/H'ware
 - ▲ Produced report Sep '01
- Conceptual Design Report
 - ▲ Refine TTF report
 - ▲ Focus on Level 1
 - ▲ Feasibility arguments for Level-2,3
 - ▲ Report: Oct. 14 '01
- Currently preparing detailed Technical Designs
 - ▲ April '02 Reviews

5 kHz total bandwidth budget

Run 2b Level 1 Trigger Upgrade

System	Problems	Solutions
Cal	1) Slow signal rise ⇒ trig on wrong X'ing	Digital Filter
	2) Trig on $\Delta\eta\times\Delta\phi$ =0.2×0.2 TTs \Rightarrow slow turn-on curve	• Clustering
Track	1) Rates sensitive to occupancy ⇒ ×1000 increase 2a→2b	Narrower Track RoadsImprove Cal-Track Match
Muon	No Additional Changes Needed!	• Requires Track Trig

2 Track Trigger Rate (Hz)

Mar 19-21, 2002

Calorimeter Trigger Tower Clustering

Problem

- Jets clusters > TT size
- EM clusters fall on boundary
- Poor E-res → Shallow turn-on curves

Possible Solution

- TT Clustering:Atlas sliding windows
- Additional Benefits
 - ▲ EM shape & Isolation cuts
 - ▲ Topological Triggers
 - ▲ Include inter-cryo region in Global Sums
- Include output for Track Matching

Level 1 Calorimeter Trigger Upgrade

- Clustering algorithm is implemented in FPGA's
- Similar to ATLAS sliding-window algorithm

Calorimeter Trigger: Columbia University, Michigan State University, Saclay

Track Trigger Upgrade

Problem

- Rate soars w/ Occupancy
 - ▲ 10⁶ Hz at 5×10³²
 (5 min-bias)

Solutions

- 1. Reduce size of track finding road: use single fiber instead of doublets
 - ▲ No. eqn's increases
 - ▲ Tune no. of layers using singlets
 - ▲ Use same system with new FPGAs in DFE's
- 2. Cal-Track Matching
 - New Cal Trig could provide ×8 finer granularity for matching
 - Modest extension of Cal upgrade

Doublet Layer

Track Trigger Upgrade

EM Triggers: ×2

+ High P_T Tracks: ×10

Track Trigger: Boston University
Cal/Track Matching: University of Arizona

FNAL DoE Review Mar 19-21, 2002

Run 2b Level 1 Trigger Upgrade: Expected Rates for Key Processes

• $L = 5 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$

Trigger	Physics	Level 1 rate, no upgrades (kHz)	Level 1 rate, with upgrades (kHz)				
EM tower>10 GeV	W→e v	5	0.3 (cal/track matching, 16-layer CTT, EM fraction)				
2 Tracks (>10 & 5 GeV) + isolation + EM>2 GeV	H →τ ⁺ τ ⁻	10	1 (cal/track matching)				
2 Had+EM towers, sum>4 GeV	ZH→vvbb	2	0.6 (calorimeter clustering)				

Upgraded trigger within 5 kHz Level 1 bandwidth budget

Run 2b Project Status

- Upper tier of project management in place Jun '01
- All WBS Level 2 sub-project managers chosen Sep '01
 - Mix of past D0 project experience, fresh blood
 - Most silicon sub-task managers identified
 - ▲ Strong, experienced group, actively collaborating on new design, R&D
 - * Most trigger sub-task managers chosen, institutional assignments made
 - * Strong university participation at all levels
 - ▲ NSF MRIs: approved (silicon), submitted (Level 1 trigger)
- Silicon project very mature, design complete, Technical Design Report in hand
- Trigger Conceptual Design Report submitted, converging on final technical designs
- Schedule, cost estimate very detailed, being fleshed out & reconsidered for upcoming Director's (April 16-18), Lehman Reviews
 - Silicon schedule 860 lines, fully resource loaded
 - * Cost estimate sharpening, more quotes in hand
 - All other necessary ingredients being prepared:
 - ▲ Basis for estimate, risk analyses, earned-value reporting, etc.

US National Science Foundation MRIs for Run 2b

- Silicon MRI submitted Feb '01, approved July '01
 - Brown, California State (Fresno), U Illinois (Chicago), Kansas, Kansas State, Michigan State, Northwestern, Stony Brook, Washington, (Moscow State, CINVESTAV)
 - ▲ Principal Investigator: A. Bean
 - ▲ Co-PIs: R. Demina, C. Gerber, R. Partridge, G. Watts
 - \$1.7M + \$0.7M matching = \$2.4M total
- Level 1 trigger MRI submitted January '02
 - + Level 1 calorimeter, track trigger, cal/track match
 - Arizona, Boston, Columbia, Florida State, Langston, Michigan State, Northeastern, Notre Dame, (Saclay)
 - ▲ Principal Investigator: M. Narain
 - ▲ Co-PIs: H. Evans, U. Heintz, M. Hildreth, D. Wood
 - Request \$2.6M total
 - ▲ \$1.3M equipment (includes \$0.2M matching)
 - Approximately covers cost of sub-projects, but without contingency (50%)
 - ▲ \$1.3M labor (includes \$0.4M matching)
- Underscores major role universities continue to play in mounting DO projects, realizing our physics program

FNAL DoE Review Mar 19-21, 2002

Run 2b M&S Cost Estimate

As presented at Director's Technical Review, Dec '01

Sub-Project	M&S (\$k)	Contingency (%)	Total (\$k)	Approx. Fiscal Year Needed	Comments FY02: sensors, electronics, mechanical DO NSF MRI: \$(1.7+0.7)M				
Silicon	8,101	42	11,499	FY02-04					
Level 1 Calorimeter Trigger	726	50	1,089	FY03-04	Most extensive portion of Level 1 trigger upgrade				
Level 1 Cal/Track Matching	97	50	146	FY02-03	Utilize existing Run 2a Muon Trigger Cards				
Level 1 Track Trigger	359	50	539	FY03-04	Fiber singlets; use DFE layout				
Level 2 Silicon Track Trigger	402	48	593	FY02-04	Full 6-layer STT upgrade				
Level 2ß Upgrade	72	37	98	FY03-04	New processors				
Online	950	17	1,116	FY02-06	Assumed from operating, not included in TOTALS below				
TOTAL M&S	\$9,757k	43	\$13,964k						

Total FNAL Technical Manpower for Silicon Project

As presented at Director's Technical Review, Dec '01

All Fermilab technical manpower, plus all physicists (FNAL + Universities)

All Fermilab Manpower with All Phys

Level 2 β Upgrade

TOTAL PROJECT COST

Total Project Cost

7,078

50

3,539

10,616

0.31

3,263 13,880

29,247

150

30,153

As presented at Director's Technical Review, Dec '01

Sub-Project	M&S			Total	Labor					Total	TOTAL	TOTAL				
	Cost(k\$)	Cont(%)	Cont(k\$)	Total(k\$)	Ind	M&S	F	U	Cost(k\$)	Cont(%)	Cont(k\$)	Total(k\$)	Ind	Labor	(FY02k\$)	(ThenYk\$)
Silicon	8,102	42	3,403	11,504	1,150	12,655	4,818	1,201	6,019	50	3,009	9,028	2,775	11,804	24,459	25,218
Level 1 Cal Trigger	726	50	363	1,089	109	1,198	56	621	676	50	338	1,014	312	1,326	2,523	2,603
Level 1 Cal Track Matching	97	50	49	146	15	160	30	62	92	50	46	139	43	181	341	352
Level 1 Track Trigger	359	50	180	539	54	592	5	125	130	50	65	195	60	255	847	871
Level 2 Silicon Track Trigger	402	48	193	595	59	654	13	129	141	50	71	212	65	277	931	958

109

13,970 1,397 15,367 4,921

0.10

4,213

9,757

• Includes all ingredients: contingency estimates on both M&S & labor, indirect costs, escalation

2,157

 Updated TPC being prepared for upcoming April reviews

Conclusions

- Run 2b has matured into a solid, well-defined project
 - * Scope carefully crafted to Run 2b physics goals
 - * Silicon design very advanced, R&D underway
 - Trigger needs well established, final technical designs being aggressively pursued
 - Project management in place, most lead individuals identified, major institutional assignments made
 - Strong personnel/groups in place at all levels
- Fully resource-loaded schedule, cost estimate in place
 - Being refined for upcoming series of reviews
 - * Very detailed, conservative approaches taken throughout
 - * Time, other contingencies undergoing special scrutiny
 - * Lab guidance being integrated as project develops
- Look forward to obtaining necessary approval for construction \$ at June Baselining Review